Deep learning: new neural nets could model continuous processes

In deep learning, neural nets use specific hidden layers to deliver defined results. AI researcher David Duvenaud is questioning all of that with ODE nets.

Deep learning is incredible: truly, it is. Being able to map human-like brain power onto a computer, so that it learns as we do, should never be taken for granted. It is one of the most astonishing scientific breakthroughs in the history of our species, however, deep learning is not beyond improvement.

At the heart of a deep learning model lies a neural net. This is the brain, if you like: a combination of stacked layers of simple nodes that work to try and find the patterns in data. The net then assigns values to data that it processes, filtering this data through different layers to come to a final conclusion.

Now, scientists are questioning how the values are assigned to data and whether there’s a more efficient way to run deep learning algorithms.

David Duvenaud, an AI researcher at the University of Toronto, set out to build a medical deep learning model that would predict a patient’s health over a period of time. Traditional neural networks thrive when they learn from data with defined observation stages: basically, the hidden layers within a deep learning model. This is difficult to align with healthcare.

Health is a continuous topic to assess. It does not rely on binary questions as it contains so many variables. So how can a neural net pick up on continuous data?

Can neural nets be improved?

Think of a deep learning model as being similar to a game of classic board game, Guess Who. In the game, each player has a selection of characters in front of them, all with a different appearance: some have facial hair, glasses, blue eyes, brown eyes and each of them unique.

One player of Guess Who asks the other binary questions to discount characters from their investigation, until they are left with the final chosen character through this process of elimination: this is the output layer.

This is similar to how a neural network works. It processes its data through different stages, eliminating more and more of the dataset until it’s left with the correct answers available. This is the technology that is used in face recognition software, for example.

Software 2.0: How neural networks work
Basic neural network model

David Duvenaud saw an opportunity. He sought to break from the binary for a more fluid form of deep learning.

Traditionally, the answer is to simply add more layers to a neural net to reach a more accurate endpoint. This is not always sensible though. Why, for example, should you have to define the number of layers within a neural network, train the data and then wait to see how accurate it is? Duvenaud’s neural net lets you specify the accuracy first, then it finds the most efficient way to train itself within that margin of error.

This is what researchers describe as an “ODE net”, short for “ordinary differential equations”.

How can an ODE be solved?

Solving an ODE numerically can be done by integration. This is a computationally intensive task and there have been methods suggested in the past to reduce the hidden stages within deep learning.

Duvenaud worked with a number of researchers on a paper that proposed a simpler method to solve an ODE. The method relies on solving a second, augmented ODE backwards and doesn’t take up too much memory. The gradient computation algorithm works by introducing an “ODEsolve” operation as an operator later on in the process.


The ODE poses interesting questions about what the most efficient methods of deep learning truly are.


This operator relies on the initial state, the function, the initial time, the end time and the searched parameters from the ODE. The presented paper provided Python code to easily compute the derivatives of the ODE solver.

The paper suggested that supervised learning – particularly MNIST written digit classification – was one application in which the ODESolve method can perform compared to a residual network with much fewer parameters.

Will ODEs revolutionise deep learning?

The ODE is not the only way to run a deep learning model. There could be any number of reasons that a scientist would want to define the number of stages for the AI that they run. Either way, “it’s not ready for prime time yet,” Duvenaud claims.

However, the ODE poses interesting questions for deep learning moving forward about how we build neural nets and what the most efficient methods of deep learning truly are. This is not a particularly new idea, but this is a breakthrough of kinds. Whether this approach works for a range of models remains to be seen.

Luke Conrad

Technology & Marketing Enthusiast

How E-commerce Marketers Can Win Black Friday

Sue Azari • 11th November 2024

As new global eCommerce players expand their influence across both European and US markets, traditional brands are navigating a rapidly shifting landscape. These fast-growing Asian platforms have gained traction by offering ultra-low prices, rapid product turnarounds, heavy investment in paid user acquisition, and leveraging viral social media trends to create demand almost in real-time. This...

Why microgrids are big news

Craig Tropea • 31st October 2024

As the world continues its march towards a greener future, businesses, communities, and individuals alike are all increasingly turning towards renewable energy sources to power their operations. What is most interesting, though, is how many of them are taking the pro-active position of researching, selecting, and implementing their preferred solutions without the assistance of traditional...

Is automation the silver bullet for customer retention?

Carter Busse • 22nd October 2024

CX innovation has accelerated rapidly since 2020, as business and consumer expectations evolved dramatically during the Covid-19 pandemic. Now, finding the best way to engage and respond to customers has become a top business priority and a key business challenge. Not only do customers expect the highest standard, but companies are prioritising superb CX to...

Automated Testing Tools and Their Impact on Software Quality

Natalia Yanchii • 09th October 2024

Test automation refers to using specialized software tools and frameworks to automate the execution of test cases, thereby reducing the time and effort required for manual testing. This approach ensures that automation tests run quickly and consistently, allowing development teams to identify and resolve defects more effectively. Test automation provides greater accuracy by eliminating human...

Custom Software Development

Natalia Yanchii • 04th October 2024

There is a wide performance gap between industry-leading companies and other market players. What helps these top businesses outperform their competitors? McKinsey & Company researchers are confident that these are digital technologies and custom software solutions. Nearly 70% of the top performers develop their proprietary products to differentiate themselves from competitors and drive growth. As...

The Impact of Test Automation on Software Quality

Natalia Yanchii • 04th October 2024

Software systems have become highly complex now, with multiple interconnected components, diverse user interfaces, and business logic. To ensure quality, QA engineers thoroughly test these systems through either automated or manual testing. At Testlum, we met many software development teams who were pressured to deliver new features and updates at a faster pace. The manual...