Deep learning: new neural nets could model continuous processes

In deep learning, neural nets use specific hidden layers to deliver defined results. AI researcher David Duvenaud is questioning all of that with ODE nets.

Deep learning is incredible: truly, it is. Being able to map human-like brain power onto a computer, so that it learns as we do, should never be taken for granted. It is one of the most astonishing scientific breakthroughs in the history of our species, however, deep learning is not beyond improvement.

At the heart of a deep learning model lies a neural net. This is the brain, if you like: a combination of stacked layers of simple nodes that work to try and find the patterns in data. The net then assigns values to data that it processes, filtering this data through different layers to come to a final conclusion.

Now, scientists are questioning how the values are assigned to data and whether there’s a more efficient way to run deep learning algorithms.

David Duvenaud, an AI researcher at the University of Toronto, set out to build a medical deep learning model that would predict a patient’s health over a period of time. Traditional neural networks thrive when they learn from data with defined observation stages: basically, the hidden layers within a deep learning model. This is difficult to align with healthcare.

Health is a continuous topic to assess. It does not rely on binary questions as it contains so many variables. So how can a neural net pick up on continuous data?

Can neural nets be improved?

Think of a deep learning model as being similar to a game of classic board game, Guess Who. In the game, each player has a selection of characters in front of them, all with a different appearance: some have facial hair, glasses, blue eyes, brown eyes and each of them unique.

One player of Guess Who asks the other binary questions to discount characters from their investigation, until they are left with the final chosen character through this process of elimination: this is the output layer.

This is similar to how a neural network works. It processes its data through different stages, eliminating more and more of the dataset until it’s left with the correct answers available. This is the technology that is used in face recognition software, for example.

Software 2.0: How neural networks work
Basic neural network model

David Duvenaud saw an opportunity. He sought to break from the binary for a more fluid form of deep learning.

Traditionally, the answer is to simply add more layers to a neural net to reach a more accurate endpoint. This is not always sensible though. Why, for example, should you have to define the number of layers within a neural network, train the data and then wait to see how accurate it is? Duvenaud’s neural net lets you specify the accuracy first, then it finds the most efficient way to train itself within that margin of error.

This is what researchers describe as an “ODE net”, short for “ordinary differential equations”.

How can an ODE be solved?

Solving an ODE numerically can be done by integration. This is a computationally intensive task and there have been methods suggested in the past to reduce the hidden stages within deep learning.

Duvenaud worked with a number of researchers on a paper that proposed a simpler method to solve an ODE. The method relies on solving a second, augmented ODE backwards and doesn’t take up too much memory. The gradient computation algorithm works by introducing an “ODEsolve” operation as an operator later on in the process.


The ODE poses interesting questions about what the most efficient methods of deep learning truly are.


This operator relies on the initial state, the function, the initial time, the end time and the searched parameters from the ODE. The presented paper provided Python code to easily compute the derivatives of the ODE solver.

The paper suggested that supervised learning – particularly MNIST written digit classification – was one application in which the ODESolve method can perform compared to a residual network with much fewer parameters.

Will ODEs revolutionise deep learning?

The ODE is not the only way to run a deep learning model. There could be any number of reasons that a scientist would want to define the number of stages for the AI that they run. Either way, “it’s not ready for prime time yet,” Duvenaud claims.

However, the ODE poses interesting questions for deep learning moving forward about how we build neural nets and what the most efficient methods of deep learning truly are. This is not a particularly new idea, but this is a breakthrough of kinds. Whether this approach works for a range of models remains to be seen.

Luke Conrad

Technology & Marketing Enthusiast

Birmingham Unveils the UK’s Best Emerging HealthTech Advances

Kosta Mavroulakis • 03rd April 2025

The National HealthTech Series hosted its latest event in Birmingham this month, showcasing innovative startups driving advanced health technology, including AI-assisted diagnostics, wearable devices and revolutionary educational tools for healthcare professionals. Health stakeholders drawn from the NHS, universities, industry and front-line patient care met with new and emerging businesses to define the future trajectory of...

Why DEIB is Imperative to Tech’s Future

Hadas Almog from AppsFlyer • 17th March 2025

We’ve been seeing Diversity, Equity, Inclusion, and Belonging (DEIB) initiatives being cut time and time again throughout the tech industry. DEIB dedicated roles have been eliminated, employee resource groups have lost funding, and initiatives once considered crucial have been deprioritised in favour of “more immediate business needs.” The justification for these cuts is often the...

The need to eradicate platform dependence

Sue Azari • 10th March 2025

The advertising industry is undergoing a seismic shift. Connected TV (CTV), Retail Media Networks (RMNs), and omnichannel strategies are rapidly redefining how brands engage with consumers. As digital privacy regulations evolve and platform dynamics shift, advertisers must recognise a fundamental truth. You cannot build a sustainable business on borrowed ground. The recent uncertainty surrounding TikTok...

The need to clean data for effective insight

David Sheldrake • 05th March 2025

There is more data today than ever before. In fact, the total amount of data created, captured, copied, and consumed globally has now reached an incredible 149 zettabytes. The growth of the big mountain is not expected to slow down, either, with it expected to reach almost 400 zettabytes within the next three years. Whilst...

What can be done to democratize VDI?

Dennis Damen • 05th March 2025

Virtual Desktop Infrastructure (VDI) offers businesses enhanced security, scalability, and compliance, yet it remains a niche technology. One of the biggest barriers to widespread adoption is a severe talent gap. Many IT professionals lack hands-on VDI experience, as their careers begin with physical machines and increasingly shift toward cloud-based services. This shortage has created a...

Tech and Business Outlook: US Confident, European Sentiment Mixed

Viva Technology • 11th February 2025

The VivaTech Confidence Barometer, now in its second edition, reveals strong confidence among tech executives regarding the impact of emerging technologies on business competitiveness, particularly AI, which is expected to have the most significant impact in the near future. Surveying tech leaders from Europe and North America, 81% recognize their companies as competitive internationally, with...